Follow us on twitter

LIKE US ON FACEBOOK

Friday, May 17, 2013

Brain Technique Shown To Boost Math Skills

If you are one of the 20% of healthy adults who struggle with basic arithmetic, simple tasks like splitting the dinner bill can be excruciating. Now, a new study suggests that a gentle, painless electrical current applied to the brain can boost math performance for up to 6 months.
Researchers don't fully understand how it works, however, and there could be side effects.
The idea of using electrical current to alter brain activity is nothing new—electroshock therapy, which induces seizures for therapeutic effect, is probably the best known and most dramatic example.
In recent years, however, a slew of studies has shown that much milder electrical stimulation applied to targeted regions of the brain can dramatically accelerate learning in a wide range of tasks, from marksmanship to speech rehabilitation after stroke.
In 2010, cognitive neuroscientist Roi Cohen Kadosh of the University of Oxford in the United Kingdom showed that, when combined with training, electrical brain stimulation can make people better at very basic numerical tasks, such as judging which of two quantities is larger. However, it wasn't clear how those basic numerical skills would translate to real-world math ability.
To answer that question, Cohen Kadosh recruited 25 volunteers to practice math while receiving either real or "sham" brain stimulation. Two sponge-covered electrodes, fixed to either side of the forehead with a stretchy athletic band, targeted an area of the prefrontal cortex considered key to arithmetic processing, says Jacqueline Thompson, a Ph.D. student in Cohen Kadosh's lab and a co-author on the study.
The electrical current slowly ramped up to about 1 milliamp—a tiny fraction of the voltage of an AA battery—then randomly fluctuated between high and low values. For the sham group, the researchers simulated the initial sensation of the increase by releasing a small amount of current, then turned it off.
For roughly 20 minutes per day over 5 days, the participants memorized arbitrary mathematical "facts," such as 4#10 = 23, then performed a more sophisticated task requiring multiple steps of arithmetic, also based on memorized symbols. A squiggle, for example, might mean "add 2," or "subtract 1."
This is the first time that brain stimulation has been applied to improving such complex math skills, says neuroethicist Peter Reiner of the University of British Columbia, Vancouver, in Canada, who wasn't involved in the research.
The researchers also used a brain imaging technique called near-infrared spectroscopy to measure how efficiently the participants' brains were working as they performed the tasks.
Although the two groups performed at the same level on the first day, over the next 4 days people receiving brain stimulation along with training learned to do the tasks two to five times faster than people receiving a sham treatment, the authors report online today in Current Biology.
Six months later, the researchers called the participants back and found that people who had received brain stimulation were still roughly 30% faster at the same types of mathematical challenges. The targeted brain region also showed more efficient activity, Thompson says.
The fact that only participants who received electrical stimulation and practiced math showed lasting physiological changes in their brains suggests that experience is required to seal in the effects of stimulation, says Michael Weisend, a neuroscientist at the Mind Research Network in Albuquerque, New Mexico, who wasn't involved with the study.
That's valuable information for people who hope to get benefits from stimulation alone, he says. "It's not going to be a magic bullet."
Although it's not clear how the technique works, Thompson says, one hypothesis is that the current helps synchronize neuron firing, enabling the brain to work more efficiently. Scientists also don't know if negative or unintended effects might result. Although no side effects of brain stimulation have yet been reported, "it's impossible to say with any certainty" that there aren't any, Thompson says.
"Math is only one of dozens of skills in which this could be used," Reiner says, adding that it's "not unreasonable" to imagine that this and similar stimulation techniques could replace the use of pills for cognitive enhancement.
In the future, the researchers hope to include groups that often struggle with math, such as people with neurodegenerative disorders and a condition called developmental dyscalculia. As long as further testing shows that the technique is safe and effective, children in schools could also receive brain stimulation along with their lessons, Johnson says.
But there's "a long way to go," before the method is ready for schools, she says. In the meantime, she adds, "We strongly caution you not to try this at home, no matter how tempted you may be to slap a battery on your kid's head."


Don’t forget to like us on Facebook: LA2LAGOS on Facebook
Don’t forget to follow us on twitter: LA2LAGOS on Twitter

No comments:

Post a Comment